
In this lecture, I will introduce the mathematical model for discrete time signals as 
sequence of samples. You will also take a first look at a useful alternative 
representation of discrete signals known as the z-transform.
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You are already familiar with the idea of sampling (using a ADC) to convert a 
continuous time signal to discrete time.
The important piece of information you need to known in this conversion process are:
1. How to chose the sampling frequency fs?  The answer to this question is that, 

based on the Sampling Theorem, you need to use fs ≥ 2 fmax, where fmax is the 
maximum frequency component of the signal.  If you do not obey the Sampling 
theorem, frequency components higher than fmax will be folded back to the lower 
frequency range – a phenomenon known as ’ALIASING’.  In practice, we generally 
use fs ≥ 3 fmax or higher.  Therefore when handling discrete signals, you must 
remember the sampling frequency fs and therefore the sampling period Ts.  
Everything you do to the signal will depend on this.

2. How many bits to use to represent each data sample?  This is the number of bits 
that the ADC provides, i.e. its resolution.  The answer to this question depends on 
the amount of quantization noise you are willing to tolerate.  For example, if you 
are dealing with normal speech signal, 10-bit resolution would generally be good 
enough.  However, if you are in a recording studio, trying to capture a chamber 
orchestra performing a piece of classical music by Mozart, you may need 20-bit 
resolution or higher in order to have a very high quality recording of the 
performance.  If an ADC has N bit resolution, then the signal-to-noise ratio  (SNR) 
of the digitized signal (i.e. signal/noise) would be around 6xN dB:

20 log10 (signal voltage)/(noise voltage) ≈ 6N dB

      The exact SNR depends on the probability distribution of the signal amplitude.
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Discrete time signals
 Sampling a continuous time signal at frequency fs converts the signal to 

discrete time.
 How frequently we need to sample is governed by the Sampling 

Theorem.

𝑥 𝑡 	𝑡 ≥ 0

𝑥[𝑛]	𝑛 ≥ 0
and n is integer



Here are FOUR basic signals and their discrete representations.
1. Unit impulse – This is represented by the discrete delta function. When n = 0, 

d(0) = 1, otherwise d(n) = 0.
2. DC voltage – This is straight forward.  However, note that even the DC voltage is 

sampled, and the signal is represented as x[n] = A, where A is the voltage value.  
This is therefore a sequence of samples:  {A, A, A, A, …}.

3. Unit step signal – This is represented by the sum of lots of unit impulses, at each 
sampling points for n ≥ 0.  For n < 0, x[n] = 0.

4. Exponential signal – This is another important signal.  Here we assume that the 
signal is causal (meaning is 0 before the t origin).  Note that whether the signal is 
exponential rise or fall depends on the value of the constant a. If 0 < a ≤ 1, x[n] 
is an exponent decaying signal.  If a > 1, x[n] is an exponent growing signal.

Note that while we use parentheses x(t) to represent a signal in continuous time, 
we use square brackets x[n] to indicate that the signal is now represented as a 
sequence of numbers. n is the sequence count or sample number (from 0 up), and 
x[n] is the magnitude of sample n. 
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Basic discrete signals
Impulse signal

𝛿 𝑛 = $1	 𝑛 = 0
0	 𝑛 ≠ 0	

A

𝑥 𝑛 = 𝐴,	
for	all	n = integer

Unit step signal
𝑢 𝑛 = $1	 𝑛 ≥ 0

0	 𝑛 < 0	

Causal exponential signals

0

𝑥 𝑛 = 𝐴𝛼!𝑢[𝑛],	
𝑓or	 α > 1

𝑥 𝑛 = 𝐴𝛼!𝑢[𝑛],	
𝑓or	 0 < α ≤ 1

A

A



Another important discrete signal is the sinusoid. Consider the following cosine 
signal with amplitude A, at frequency w0 and phase F. 

The discrete signal can be mathematically modelled as:

Note the following important differences:
1. In continuous time, t is a continuous quantity. Therefore there are infinite 

number of values for x(t).  In contrast, x[n] is only defined for integer values of n.
2. In continuous time, we use the angular frequency w0 which has a unit of 

rad/sec.   In discrete time we use the angular phase increment between samples 
W0, which has a unit of rad/sample.  We call W0 the discrete frequency of the 
signal.

3. The relationship between w0 and W0 is:
W0 = w0 x Ts,  where Ts is the sampling period = 1/fs.

This concept of signal frequency in discrete time is something that many students 
found difficult. It is not helped by the fact that many textbook erroneously use w0 
for both continuous time and discrete time frequency.
Frequency is the measure of change in signal phase f per unit time t, i.e.  f = df/dt.  
Its unit is therefore rad/sec.  Since we have discretized time into steps of Ts, we 
should now measure change in signal phase per sample. Hence the unit of W0 is 
rad/sample, not rad/sec.

𝑥 𝑡 = 𝐴 cos 𝜔!𝑡 + 𝜙 	

𝑥 𝑛 = 𝐴 cos Ω!𝑛 + 𝜙 	 for	n = integer
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Discrete sinusoidal signal
Cosine signal

 Compare this with continuous time signal equation:

 The discrete time signal is sampled at fs, where Ts = 1/ fs is the sampling 
period (i.e. time step between successive samples).

 Note that W0 in discrete time domain is angle increment of this sinusoidal 
signal between samples.  Its unit is radians/sample (not rad/sec as in 
continuous time case.

𝑥[𝑛] = 𝐴 cos Ω!𝑛 + 𝜙 	

W0 is angle increment between samples
In radian/sample

𝑥 𝑛 = 𝐴 cos Ω!𝑛 + 𝜙 	 for	n = integer

𝑥 𝑡 = 𝐴 cos 𝜔!𝑡 + 𝜙 	
sampling



Let us explore the significance of W0 a bit more. 
Signal (a) – This represents a DC voltage.  This is effectively having W0 = 0.
Signal (b) - Now let us consider the case where W0 = p/8.  Interestingly, we don’t 
really worry about Ts here.  Instead, we consider how much the signal phase angle is 
advanced every successive sample.  Since a sinusoidal signal has a phase of 2p for 
each cycle, having W0 = p/8 implies that we take N samples per cycle, where N = 16.
What is the frequency f0 = w0/2p of the original signal x(t) (before we convert it to 
discrete time)? We can only answer this if we know the sampling frequency fs.
Suppose the sampling frequency fs = 8kHz, (i.e. Ts = 0.125msec) and there are 16 
samples per cycle.  Therefor the signal frequency f0 = fs/N = 500Hz.
(Make sure you understand how to relate sampling frequency to signal frequency 
and number of samples per cycle in the context of discrete signals.)
Signal (c) – In this case, W0 = p/4 . We are therefore taking 8 samples per signal 
cycle, or N = fs / f0 = 8.  The signal frequency f0 = fs/8.
Signal (d) - W0 = p, and each cycle of the signal has an angle of 2p. We are therefore 
sampling at twice the signal frequency – i.e. we are at the limit of the allowed 
minimum sampling frequency.  This frequency beyond which signal cannot be 
captured without aliasing or frequency folding.
One important note:  these diagrams show special cases  where fs/fo is a whole 
integer. Then the discrete time signal is a periodic signal.  In general, a discrete time 
version of a sinusoid or any periodic signal is NOT strictly periodic, unless fs/fo is an 
integer and we have integer number of sample for signal cycle.
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Discrete sinusoidal signal

𝑥 𝑛 = 𝐴cos Ω"𝑛 + 𝜙 	 for	n = integer

(a)  When  Ω" = 0	𝑜𝑟	𝑥 𝑛 	is	DC

(c)  When  Ω! =
"
#

i.e. 8 sample/cycle
(d)  When  Ω! = 𝜋

i.e. 2 sample/cycle

(b)  When  Ω! =
"
$

i.e. 16 sample/cycle

W0 is in rad/sample



Here we have the four most basic operations applied to discrete signals as sequence 
of sample values. 
The most important operation is the delay operator.  

Here y[n] is the x[n] sequence delayed by k sample periods.

𝑦 𝑛 = 𝑥 𝑛 − 𝑘
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Operations on discrete signals

 Sum of two signals:

 Product of two signals:

 Amplification of a signal:

 Delaying a signal by k samples:

𝑠 𝑛 = 𝑥 𝑛 + 𝑦 𝑛

𝑝 𝑛 = 𝑥 𝑛 	. 𝑦 𝑛

𝑦 𝑛 = 𝛼	. 𝑥 𝑛

𝑦 𝑛 = 𝑥 𝑛 − 𝑘



Mathematically, it is really useful to model a discrete time signal x[n] consisting of 
sample sequence: {x[0], x[1], x[2] …} in terms of the unit impulse with different 
delays.
The left hand plot is the unit impulse d[n].  The middle plot is the unit impulse 
delayed by k sample intervals.

Equipped with this, we can decompose the sequence x[n] into a sum of delay 
impulses at each sampling point, each being weighted by the signal amplitude x[n].

What is the relationship between x[n] and the original continuous time signal x(t)?  
 x[n] = x(nTs),     where Ts is the sampling period = 1/fs.

Note that we assume that signal is causal.
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 We can represent a  causal discrete signal 𝑥 𝑛 	in terms of sum of 
weighted delayed impulses:

Discrete signal and impulses

𝑥 𝑛 = 𝑥 0 	𝛿 𝑛 + 𝑥 1 	𝛿 𝑛 − 1 + 𝑥 2 	𝛿 𝑛 − 2 + 𝑥 3 	𝛿 𝑛 − 3 + ……

𝑥 𝑛 = @
%&!

'

𝑥 𝑘 	𝛿 𝑛 − 𝑘

x[0] x[1]
x[2]

x[3]
x[4]

x[5]

n0 1 2 3 4 5

x[n]

1

n
0 1 2 3

d[n]

1

n
0 1   ,,,,,, 

2

k

d[n-k]



To compute the energy of a discrete signal, we only need to sum the square of each 
of the sample as shown here:

Often, we are not interested in the TOTAL ENERGY of a signal.  A more useful 
measure is the energy of the signal over a finite window (over K samples).  This is 
called instantaneous energy and is defined as:
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 The energy of a discrete signal can be computed easily – simply sum the 
square of each sample values: 

Energy of a discrete signal

𝐸 𝑥( 𝑛 =	@
%&!

)*+

|𝑥 𝑖 + 𝑘 |,

x[0]
x[1]

x[2]
x[3]

x[4]

x[5]

n
0 1 2 3 4 5

x[n]

 Instantaneous energy of the signal at sample i over a window of K 
samples is:

𝐸 𝑥 𝑛 =	@
%&!

'

|𝑥 𝑘 |,



Now I want to introduce a new concept known as z-transform.  This is yet another 
useful transform in signals and systems, and is used for handling (mathematically) 
discrete time signals. However, I want you to take the contents of this slide on faith.  
I will show you in a later lecture how the z-transform is derived, and to relate it to 
the Laplace transform. 
For now, I want you to accept that if you take a unit impulse d[n] and delay it by k 
samples, then the delayed version can be represented  (in the z-domain) as 
multiplication with z-k.  
The z-domain version of x[n] is written as X[z], similar to Laplace where we use 
uppercase X, and the variable is in z (not n). 
Now we have a new representation in the z-domain for the signal x[n] as:

The most imporatnt takeaway message here is, in the z-domain, we represent a k 
sample DELAY operation by the term z-k.

Why we do this and why is it useful?  I will explain this in detail in a later lecture.

 

𝑥 𝑛 → 𝑋 𝑧 = 	𝑥 0 	𝑧! + 𝑥 1 𝑧"# + 𝑥 2 𝑧"$ + 𝑥 3 𝑧"% + ……

𝑋 𝑧 = <
&'!

(

𝑥 𝑘 𝑧"&
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 Instead of representing discrete signals in terms of impulse functions with 
various delay, we can transform the discrete signal into another domain 
(or mathematical representation). 

 Let us assume that we use a transformation that maps an impulse 
function with delay k such that:

 Then the discrete signal x[n] is transformed to another function in terms 
of the variable z:

 X[z] is the z-transform of the signal x[n].  For now, you only need to 
remember that z-k represents k sample period delay.

𝑥 𝑛 	 → 	 𝑋 𝑧 = 	𝑥 0 	𝑧I + 𝑥 1 𝑧JK + 𝑥 2 𝑧JK + 𝑥 3 𝑧JL + ……

𝑋 𝑧 = 4
MNI

O

𝑥 𝑘 𝑧JM

An alternative representation of discrete signals

𝛿 𝑛 − 𝑘 	 → 	 𝑧JM

𝑥 𝑛 = 𝑥 0 	𝛿 𝑛 + 𝑥 1 	𝛿 𝑛 − 1 + 𝑥 2 	𝛿 𝑛 − 2 + 𝑥 3 	𝛿 𝑛 − 3 + ……
z

z



Let us apply what you have learned so far to some real signals you used in the lab.  
With the IMU, we obtained an estimate of the pitch angle (y-axis rotation) using the 
gyroscope.  Assume the pitch of the Pybench board changes from 0 degree at t=0 to 
10 degrees. This is effectively a step function. 
However, the pitch angle is sampled with a period Dt.  Let us assume that it takes 
two sample periods for the pitch angle to reach 10.  We get the plot of discrete 
values from the IMU (via the I2C interface) as shown in the plot here.
This angle change is measured by the gyroscope as an angular velocity.  How does 
one represent derivative (1st order differentiation) in discrete time in a 
microprocessor?  
Answer:  we use difference equation or take the difference between successive 
samples:

 

∆𝑝
∆𝑡

= 𝑝̇ 𝑛 =
𝑝 𝑛 − 𝑝[𝑛 − 1]

∆𝑡
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 Assume pitch angle p(t) changes from 0 to 
10 shortly after t = 0

 After sampling, we get p[n] as shown 
where it takes two sample periods to 
reach final value of 10

 Gyroscope measure angular velocity #$
#%

 In discrete time domain, we get

 For discrete signals, we compute 
differentiation using differences

 This graph shows the sample values of 
the gyroscope reading

Example – Gyroscope signal

∆𝑝
∆𝑡 = 𝑝̇ 𝑛 =

𝑝 𝑛 − 𝑝[𝑛 − 1]
∆𝑡



With the gyro, what is being measure is 𝑝̇[𝑛].  From this, we need to derive an 
estimate of the pitch angle B𝑝[𝑛] through integration.

In discrete domain, integration is achieved by accumulating the input samples:

B𝑝 𝑛 = B𝑝 𝑛 − 1 + 𝑝̇[𝑛]∆𝑡

This equation is said to be recursive because the future value is of B𝑝 is computed 
from previous value(s) of B𝑝 .
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 How do we obtain an estimate of the pitch 
angle 𝑝̂ 𝑛  from the gyro reading 𝑝̇[𝑛]?

 We perform integration:

 So integration in discrete time domain is 
perform with summation in a recursive 
equation

Derive pitch angle from gyro data

𝑝̂ n = 𝑝̂ n − 1 + 𝑝̇ 𝑛 ∆𝑡



Unfortunately all gyroscope provide measurement for 𝑝̇[𝑛] which has a DC offset 
error.  Such an error, after integration, get accumulated over time. This manifests 
itself as a linear rise or fall in the estimated pitch angle.  For example with the above 
example, we get (assuming B𝑝 −1 = 0):

n                 0     1     2      3      4     5     6     7      8     9     10
B𝑝[𝑛]           0    0.5  1.0 1.5   2.0  2.5  3.0  3.5   4.0  4.5  5.0  
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 All transducers that measure physical 
quantities (such as angular velocity) has 
errors

 In gyroscope, the problematic error is the 
DC offset.  That means even if the gyro is 
NOT rotating, the IMU returns a small 
value 𝜖

 The result of such offset after integration 
is to yield a pitch angle estimate that 
increases or decrease linearly with time 
as shown here.

Problem of Drift in Gyroscope

𝑝̂ n = 𝑝̂ n − 1 + 𝜀	 for	n > 0



Estimating the pitch angle using the accelerometer instead of the gyroscope has its 
own problem.  The accelerometer cannot distinguish acceleration due to tilting (i.e. 
gravitational force) or due to movement (i.e. vibration or motion).
Therefore instead of a nice step function, you will see a step function with high 
frequency noise added as shown here.

In the lecture next week, I will show you how to mitigate against these two 
undesirable effects using the complementary filter in Lab 3.
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 Let us assume that the Pybench board is 
instantaneously rotated to 10 degrees

 The accelerometer’s measurement will 
reflect this, but superimpose on this is a 
lot of noise

 Partly is due to unwanted forces acting on 
the mass inside the IMU

Problem of noise in accelerometer data



Here are the three main things that you should know after this lecture:

1. How sampling changes a time domain signal to a discrete-time samples. In 
particular, how it affects the frequency of the sinewave. Each sample increases 
the phase angle of the signal.  So the “discrete-time frequency” is actually angle 
increment between samples.

2. Any discrete signal can be modelled by as sequence of delayed impulses, each 
scaled by the sample amplitude.
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1. Discrete sinusoidal signal is of the form:

Three Big Ideas (1)

𝑥[𝑛] = 𝐴 cos Ω!𝑛 + 𝜙 	𝑥 𝑡 = 𝐴 cos 𝜔!𝑡 + 𝜙 	 sampling

W0 is angle increment between samples
In radian/sample

2. Any discrete signal can be expressed as weighted sum of unit impulses, delayed and 
scaled.

𝑥 𝑛 = 𝑥 0 	𝛿 𝑛 + 𝑥 1 	𝛿 𝑛 − 1 + 𝑥 2 	𝛿 𝑛 − 2 + 𝑥 3 	𝛿 𝑛 − 3 + ……



If we substitute 𝛿 𝑛 − 𝑘   with  𝑧"&,  we perform a z-transform on the discrete-time 
signal x[n].   
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Three Big Ideas (2)

3. If we map the delayed impulse (delay function) as:

     We transforms discrete time signals to an new domain, called z-domain.  

This transform is known as z-transform, and is useful to model discrete signals.

𝛿 𝑛 − 𝑘 	 → 	 𝑧JM

𝑥 𝑛 	 → 	 𝑋 𝑧 = 	𝑥 0 	𝑧I + 𝑥 1 𝑧JK + 𝑥 2 𝑧JK + 𝑥 3 𝑧JL + ……
z-transform


