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In this lecture, | will introduce the mathematical model for discrete time signals as
sequence of samples. You will also take a first look at a useful alternative
representation of discrete signals known as the z-transform.




Discrete time signals

€ Sampling a continuous time signal at frequency fs converts the signal to
discrete time.

4 How frequently we need to sample is governed by the Sampling

Theorem.
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You are already familiar with the idea of sampling (using a ADC) to convert a
continuous time signal to discrete time.

The important piece of information you need to known in this conversion process are:

1. How to chose the sampling frequency fs? The answer to this question is that,
based on the Sampling Theorem, you need to use fs > 2 fmax, where fmax is the
maximum frequency component of the signal. If you do not obey the Sampling
theorem, frequency components higher than fmax will be folded back to the lower
frequency range — a phenomenon known as ‘ALIASING’. In practice, we generally
use fs 2 3 fmax or higher. Therefore when handling discrete signals, you must
remember the sampling frequency fs and therefore the sampling period Ts.
Everything you do to the signal will depend on this.

2. How many bits to use to represent each data sample? This is the number of bits
that the ADC provides, i.e. its resolution. The answer to this question depends on
the amount of quantization noise you are willing to tolerate. For example, if you
are dealing with normal speech signal, 10-bit resolution would generally be good
enough. However, if you are in a recording studio, trying to capture a chamber
orchestra performing a piece of classical music by Mozart, you may need 20-bit
resolution or higher in order to have a very high quality recording of the
performance. If an ADC has N bit resolution, then the signal-to-noise ratio (SNR)
of the digitized signal (i.e. signal/noise) would be around 6xN dB:

20 log, (signal voltage)/(noise voltage) ~ 6N dB
The exact SNR depends on the probability distribution of the signal amplitude.



Basic discrete signals

Impulse signal x[n] = 4,
for all n = integer

0 n 0

Unit step signal Causal exponential signals

uln] = {3 T A x[n] = Aa™u[n],

1 R [ F TR

0 n
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Here are FOUR basic signals and their discrete representations.

1. Unitimpulse — This is represented by the discrete delta function. When n =0,
d(0) = 1, otherwise d(n) = 0.

2. DCvoltage — This is straight forward. However, note that even the DC voltage is
sampled, and the signal is represented as x[n] = A, where A is the voltage value.
This is therefore a sequence of samples: {A, A A A, ..}

3. Unit step signal — This is represented by the sum of lots of unit impulses, at each
sampling points forn >0. Forn <0, x[n] =0.

4. Exponential signal — This is another important signal. Here we assume that the
signal is causal (meaning is 0 before the t origin). Note that whether the signal is
exponential rise or fall depends on the value of the constant a.. If 0 < a0 £ 1, x[n]
is an exponent decaying signal. If o > 1, x[n] is an exponent growing signal.

Note that while we use parentheses x(t) to represent a signal in continuous time,
we use square brackets x[n] to indicate that the signal is now represented as a
sequence of numbers. n is the sequence count or sample number (from 0 up), and
x[n] is the magnitude of sample n.



Discrete sinusoidal signal

Cosine signal

x[n] = Acos(Qyn + ¢) forn = integer

l l l o ! l l l n
), is angle increment between samples
In radian/sample

@ Compare this with continuous time signal equation:

sampling
x(t) = Acos(wot + ¢) — x[n] = Acos(Qyn + ¢)

¢ The discrete time signal is sampled at f;, where T = 1/f is the sampling
period (i.e. time step between successive samples).

¢ Note that Q in discrete time domain is angle increment of this sinusoidal
signal between samples. lIts unit is radians/sample (not rad/sec as in
continuous time case.
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Another important discrete signal is the sinusoid. Consider the following cosine
signal with amplitude A, at frequency g and phase @.

x(t) = Acos(wyt + ¢)
The discrete sighal can be mathematically modelled as:
x[n] = Acos(Qon + ¢) forn = integer
Note the following important differences:

1. In continuous time, t is a continuous quantity. Therefore there are infinite
number of values for x(t). In contrast, x[n] is only defined for integer values of n.

2. In continuous time, we use the angular frequency mg which has a unit of
rad/sec. In discrete time we use the angular phase increment between samples
Qgq, which has a unit of rad/sample. We call Qg the discrete frequency of the
signal.

3. The relationship between wg and Qg is:

Qg = woxTs, where Ts is the sampling period = 1/fs.
This concept of signal frequency in discrete time is something that many students

found difficult. It is not helped by the fact that many textbook erroneously use m,
for both continuous time and discrete time frequency.

Frequency is the measure of change in signal phase ¢ per unit time t, i.e. f=d¢/dt.
Its unit is therefore rad/sec. Since we have discretized time into steps of Ts, we
should now measure change in signal phase per sample. Hence the unit of €, is
rad/sample, not rad/sec.



Discrete sinusoidal signal

= Acos(Qyn+ ¢) forn = integer Qq is in rad/sample
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(a) When Q4 = 0 or x[n] is DC (b) When Q, = g
i.e. 16 sample/cycle

| - LT
I

(c) When Q, =g (d) When Qo ==
i.e. 8 sample/cycle i.e. 2 sample/cycle
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Let us explore the significance of )y a bit more.
Signal (a) — This represents a DC voltage. This is effectively having Q5 =0

Signal (b) - Now let us consider the case where QQy = /8. Interestingly, we don’t
really worry about Ts here. Instead, we consider how much the signal phase angle is
advanced every successive sample. Since a sinusoidal signal has a phase of 2 for
each cycle, having Qg = /8 implies that we take N samples per cycle, where N = 16.

What is the frequency f, = ®y/27 of the original signal x(t) (before we convert it to
discrete time)? We can only answer this if we know the sampling frequency fs.

Suppose the sampling frequency fs = 8kHz, (i.e. Ts = 0.125msec) and there are 16
samples per cycle. Therefor the signal frequency f, = fs/N = 500Hz.

(Make sure you understand how to relate sampling frequency to signal frequency
and number of samples per cycle in the context of discrete signals.)

Signal (c) — In this case, 0y = ©/4 . We are therefore taking 8 samples per signal
cycle, or N =fs / f, = 8. The signal frequency f, = fs/8.

Signal (d) - Q) = w, and each cycle of the signal has an angle of 2. We are therefore
sampling at twice the signal frequency —i.e. we are at the limit of the allowed

minimum sampling frequency. This frequency beyond which signal cannot be
captured without aliasing or frequency folding.

One important note: these diagrams show special cases where fs/fo is a whole
integer. Then the discrete time signal is a periodic signal. In general, a discrete time
version of a sinusoid or any periodic signal is NOT strictly periodic, unless fs/fo is an
integer and we have integer number of sample for signal cycle.



Operations on discrete signals

4 Sum of two signals:
s[n] = x[n] + y[n]
4 Product of two signals:

pln] = x[n].y[n]

4 Amplification of a signal:

y[n]l = a.x[n]
@ Delaying a signal by k samples:
y[n] = x[n — k]
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Here we have the four most basic operations applied to discrete signals as sequence
of sample values.

The most important operation is the delay operator.

y[nl = x[n — k]

Here y[n] is the x[n] sequence delayed by k sample periods.



Discrete signal and impulses

# We can represent a causal discrete signal x[n] in terms of sum of
weighted delayed impulses:

3[n] 3[n-k] X[n]
X[5]
x[2] x[4]
1
1 1 x[0] X[T] xz XTB] x e0 o000
n L—o—oj— n - n
0 1 2 3 0 1 s k 0 1.2 3 4 5
x[n] = x[0] §[n] + x[1] §[n — 1] + x[2] 6[n — 2] + x[3] 6[n — 3] + ......
x[n] = z x[k] 8[n — k]
k=0
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Mathematically, it is really useful to model a discrete time signal x[n] consisting of
sample sequence: {x[0], x[1], x[2] ...} in terms of the unit impulse with different
delays.

The left hand plot is the unit impulse 8[n]. The middle plot is the unit impulse
delayed by k sample intervals.

Equipped with this, we can decompose the sequence x[n] into a sum of delay
impulses at each sampling point, each being weighted by the signal amplitude x[n].

What is the relationship between x[n] and the original continuous time signal x(t)?

x[n] =x(nTs), where Ts is the sampling period = 1/fs.

Note that we assume that signal is causal.



Energy of a discrete signal

@ The energy of a discrete signal can be computed easily — simply sum the
square of each sample values:

X[n]
x[5]

T

0 1 2 3 4 5

X(0] X[T” T[Z] X[3] Xf] cesee Elxnly = Z |x[K]|?

@ Instantaneous energy of the signal at sample i over a window of K
samples is:

=

-1

E{qnl} = ) |x[i+k]|?

0

&
Il
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To compute the energy of a discrete signal, we only need to sum the square of each
of the sample as shown here:

Ex[nl} = ) [x[k]P
k=0

Often, we are not interested in the TOTAL ENERGY of a signal. A more useful
measure is the energy of the signal over a finite window (over K samples). This is
called instantaneous energy and is defined as:

=

-1

E{x[n]} = ) |x[i+k]I?
0

&
1l



An alternative representation of discrete signals

@ Instead of representing discrete signals in terms of impulse functions with
various delay, we can transform the discrete signal into another domain
(or mathematical representation).

@ Let us assume that we use a transformation that maps an impulse
function with delay k such that:

S[n—k] 3 z7k

€ Then the discrete signal x[n] is transformed to another function in terms

of the variable z:

x[n] = x[0] §[n] + x[1] 6[n — 1] + x[2] §[n — 2] + x[3] 6[n — 3] + ......
x[n] 5 X[z] = x[0] 20 + x[1]z" Y + x[2]z "1 + x[3]z 3 + ......
X[z] = Z x[k]z*

k=0
@ X[z] is the z-transform of the signal x[n]. For now, you only need to
remember that z represents k sample period delay.
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Now | want to introduce a new concept known as z-transform. This is yet another
useful transform in signals and systems, and is used for handling (mathematically)
discrete time signals. However, | want you to take the contents of this slide on faith.
| will show you in a later lecture how the z-transform is derived, and to relate it to

the Laplace transform.

For now, | want you to accept that if you take a unit impulse 3[n] and delay it by k
samples, then the delayed version can be represented (in the z-domain) as
multiplication with 7K,

The z-domain version of x[n] is written as X[z], similar to Laplace where we use
uppercase X, and the variable is in z (not n).

Now we have a new representation in the z-domain for the signal x[n] as:

x[n] = X[z] = x[0] z° + x[1]z7Y + x[2]z7? + x[3]z3 + ......

X[z] = x[k]z™*

The most imporatnt takeaway message here is, in the z-domain, we represent a k
sample DELAY operation by the term z™".

Why we do this and why is it useful? | will explain this in detail in a later lecture.



Example — Gyroscope signal

& Assume pitch angle p(t) changes from 0 to

10 shortly aftert =0 pitch angle p[n]

& After sampling, we get p[n] as shown 10 pl2]  pI3] p[":]_ P[_5]_ _________
where it takes two sample periods to ,/’" o
reach final value of 10 J)
i 5 [ At TR EX
® G | locity — / >
yroscope measure angular velocity — o1l |
@ In discrete time domain, we get .
-1 0 1 2 3 4 5 n
A_p =P [n] = p[n] _ p[n _ 1] gyro reading p[n]
At ? At

& For discrete signals, we compute
differentiation using differences

@ This graph shows the sample values of
the gyroscope reading
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Let us apply what you have learned so far to some real signals you used in the lab.
With the IMU, we obtained an estimate of the pitch angle (y-axis rotation) using the
gyroscope. Assume the pitch of the Pybench board changes from 0 degree at t=0 to
10 degrees. This is effectively a step function.

However, the pitch angle is sampled with a period At. Let us assume that it takes
two sample periods for the pitch angle to reach 10. We get the plot of discrete
values from the IMU (via the 12C interface) as shown in the plot here.

This angle change is measured by the gyroscope as an angular velocity. How does
one represent derivative (1st order differentiation) in discrete time in a
microprocessor?

Answer: we use difference equation or take the difference between successive
samples:

Ap _ (] _pln] —p[n-1]
Ar PUH= At




Derive pitch angle from gyro data

4 How do we obtain an estimate of the pitch gyro reading p[n]
angle p[n] from the gyro reading p[n]?
& We perform integration:

pIn] = p[n — 1] + p[n]At

& So integration in discrete time domain is
perform with summation in a recursive

equation
gyro pitch angle p[n]
10 ®>--0--06--0
5 [ At TR EE
//' le—>
-1 0 1 2 3 4 s n
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With the gyro, what is being measure is p[n]. From this, we need to derive an
estimate of the pitch angle p[n] through integration.

In discrete domain, integration is achieved by accumulating the input samples:

pln] = pln — 1] + p[n]At

This equation is said to be recursive because the future value is of p is computed
from previous value(s) of p .



Problem of Drift in Gyroscope

@ All transducers that measure physical

quantities (such as angular velocity) has
errors

In gyroscope, the problematic error is the

gyro reading p[n]

gyro offset = 0.5

DC offset. That means even if the gyro is teee
NOT rotating, the IMU returns a small € T f f * f
value € 40 1 2 3 4 5 n
The result of such offset after integration gyro pitch angle B[]
is to yield a pitch angle estimate that
increases or decrease linearly with time 25 I
as shown here. R
e o000 0
pln] =pn—1]+¢ forn>0 ?T
-1 0 1 2 3 4 5 n
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Unfortunately all gyroscope provide measurement for p[n] which has a DC offset
error. Such an error, after integration, get accumulated over time. This manifests
itself as a linear rise or fall in the estimated pitch angle. For example with the above
example, we get (assuming p[—1] = 0):

n 0o 1 2 3 4 5 6 7 8 9 10
pn] 0 051015 2.0253.035 404550



Problem of noise in accelerometer data

@ Let us assume that the Pybench board is

pitch angle p[n]
instantaneously rotated to 10 degrees

100--@--@-@-- @@
€ The accelerometer's measurement will
reflect this, but superimpose on this is a 3 At )
lot of noise o[-1] —
-@
-1 0 1 2 3 4 5 n

& Partly is due to unwanted forces acting on

the mass inside the IMU Accel reading p[n]

fluctuations

10 ® '
5 At TR EE
Py l
4 5

-1 0 1 2 3 n
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Estimating the pitch angle using the accelerometer instead of the gyroscope has its
own problem. The accelerometer cannot distinguish acceleration due to tilting (i.e.
gravitational force) or due to movement (i.e. vibration or motion).

Therefore instead of a nice step function, you will see a step function with high
frequency noise added as shown here.

In the lecture next week, | will show you how to mitigate against these two
undesirable effects using the complementary filter in Lab 3.



Three Big Ideas (1)

1. Discrete sinusoidal signal is of the form:

x(t) = Acos(wot + ¢) w x[n] = Acos(Qon + ¢)

O is angle increment between samples
In radian/sample

2. Any discrete signal can be expressed as weighted sum of unit impulses, delayed and

scaled.
X[n]

X[5]

| x[n] = x[0] 8[n] + x[1] 8[n — 1] + x[2] 8[n — 2] + x[3] S[n — 3] + ...... |

x[2] x[4]
x[0] XT]IZTﬂI[.....

n
0 1.2 3 4 5 n
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Here are the three main things that you should know after this lecture:

1. How sampling changes a time domain signal to a discrete-time samples. In
particular, how it affects the frequency of the sinewave. Each sample increases
the phase angle of the signal. So the “discrete-time frequency” is actually angle

increment between samples.

2. Any discrete signal can be modelled by as sequence of delayed impulses, each
scaled by the sample amplitude.



Three Big Ideas (2)

3. If we map the delayed impulse (delay function) as:

Sn—k] » z7%

We transforms discrete time signals to an new domain, called z-domain.

This transform is known as z-transform, and is useful to model discrete signals.

z-transform

x[n] - X[z] = x[0]z° + x[1]z7  + x[2]z7 Y + x[3]z73 + ......
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If we substitute §[n — k] with z7¥, we perform a z-transform on the discrete-time
signal x[n].



